The origin of passive force enhancement in skeletal muscle.
نویسندگان
چکیده
The aim of the present study was to test whether titin is a calcium-dependent spring and whether it is the source of the passive force enhancement observed in muscle and single fiber preparations. We measured passive force enhancement in troponin C (TnC)-depleted myofibrils in which active force production was completely eliminated. The TnC-depleted construct allowed for the investigation of the effect of calcium concentration on passive force, without the confounding effects of actin-myosin cross-bridge formation and active force production. Passive forces in TnC-depleted myofibrils (n = 6) were 35.0 +/- 2.9 nN/ microm(2) when stretched to an average sarcomere length of 3.4 microm in a solution with low calcium concentration (pCa 8.0). Passive forces in the same myofibrils increased by 25% to 30% when stretches were performed in a solution with high calcium concentration (pCa 3.5). Since it is well accepted that titin is the primary source for passive force in rabbit psoas myofibrils and since the increase in passive force in TnC-depleted myofibrils was abolished after trypsin treatment, our results suggest that increasing calcium concentration is associated with increased titin stiffness. However, this calcium-induced titin stiffness accounted for only approximately 25% of the passive force enhancement observed in intact myofibrils. Therefore, approximately 75% of the normally occurring passive force enhancement remains unexplained. The findings of the present study suggest that passive force enhancement is partly caused by a calcium-induced increase in titin stiffness but also requires cross-bridge formation and/or active force production for full manifestation.
منابع مشابه
Characterization of the passive component of force enhancement following active stretching of skeletal muscle.
The mechanisms causing the steady-state force enhancement following active skeletal muscle stretching are not well understood. Recently, we found direct evidence that part of the force enhancement is associated with the engagement of a passive component. In this study, we reproduced the conditions that give consistent passive force enhancement and evaluated the mechanical properties of this pas...
متن کاملActive force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrica...
متن کاملConsiderations on the history dependence of muscle contraction.
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted p...
متن کاملForce enhancement following stretching of skeletal muscle: a new mechanism.
We investigated force enhancement following stretching in the in situ cat soleus muscle on the ascending and descending limb of the force-length relationship by varying the amount and speed of stretching and the frequency of activation (5 Hz, 30 Hz). There was a small but consistent (P<0.05) amount of force enhancement following muscle stretching on the ascending limb of the force-length relati...
متن کاملInvited Review Considerations on the history dependence of muscle contraction
Rassier, Dilson E., and Walter Herzog. Considerations on the history dependence of muscle contraction. J Appl Physiol 96: 419–427, 2004; 10.1152/japplphysiol.00653. 2003.—When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 1 شماره
صفحات -
تاریخ انتشار 2008